概述
CrewAI 中的协作功能使智能体能够作为一个团队协同工作,通过委派任务和提问来利用彼此的专业知识。当 `allow_delegation=True` 时,智能体会自动获得强大的协作工具。快速入门:启用协作
复制
询问 AI
from crewai import Agent, Crew, Task
# Enable collaboration for agents
researcher = Agent(
role="Research Specialist",
goal="Conduct thorough research on any topic",
backstory="Expert researcher with access to various sources",
allow_delegation=True, # 🔑 Key setting for collaboration
verbose=True
)
writer = Agent(
role="Content Writer",
goal="Create engaging content based on research",
backstory="Skilled writer who transforms research into compelling content",
allow_delegation=True, # 🔑 Enables asking questions to other agents
verbose=True
)
# Agents can now collaborate automatically
crew = Crew(
agents=[researcher, writer],
tasks=[...],
verbose=True
)
智能体协作的工作原理
当 `allow_delegation=True` 时,CrewAI 会自动为智能体提供两个强大的工具1. 委派工作工具
允许智能体将任务分配给具有特定专业知识的队友。复制
询问 AI
# Agent automatically gets this tool:
# Delegate work to coworker(task: str, context: str, coworker: str)
2. 提问工具
使智能体能够向同事提出具体问题以收集信息。复制
询问 AI
# Agent automatically gets this tool:
# Ask question to coworker(question: str, context: str, coworker: str)
协作实战
以下是一个完整的示例,展示了智能体在内容创作任务中进行协作复制
询问 AI
from crewai import Agent, Crew, Task, Process
# Create collaborative agents
researcher = Agent(
role="Research Specialist",
goal="Find accurate, up-to-date information on any topic",
backstory="""You're a meticulous researcher with expertise in finding
reliable sources and fact-checking information across various domains.""",
allow_delegation=True,
verbose=True
)
writer = Agent(
role="Content Writer",
goal="Create engaging, well-structured content",
backstory="""You're a skilled content writer who excels at transforming
research into compelling, readable content for different audiences.""",
allow_delegation=True,
verbose=True
)
editor = Agent(
role="Content Editor",
goal="Ensure content quality and consistency",
backstory="""You're an experienced editor with an eye for detail,
ensuring content meets high standards for clarity and accuracy.""",
allow_delegation=True,
verbose=True
)
# Create a task that encourages collaboration
article_task = Task(
description="""Write a comprehensive 1000-word article about 'The Future of AI in Healthcare'.
The article should include:
- Current AI applications in healthcare
- Emerging trends and technologies
- Potential challenges and ethical considerations
- Expert predictions for the next 5 years
Collaborate with your teammates to ensure accuracy and quality.""",
expected_output="A well-researched, engaging 1000-word article with proper structure and citations",
agent=writer # Writer leads, but can delegate research to researcher
)
# Create collaborative crew
crew = Crew(
agents=[researcher, writer, editor],
tasks=[article_task],
process=Process.sequential,
verbose=True
)
result = crew.kickoff()
协作模式
模式 1:研究 → 撰写 → 编辑
复制
询问 AI
research_task = Task(
description="Research the latest developments in quantum computing",
expected_output="Comprehensive research summary with key findings and sources",
agent=researcher
)
writing_task = Task(
description="Write an article based on the research findings",
expected_output="Engaging 800-word article about quantum computing",
agent=writer,
context=[research_task] # Gets research output as context
)
editing_task = Task(
description="Edit and polish the article for publication",
expected_output="Publication-ready article with improved clarity and flow",
agent=editor,
context=[writing_task] # Gets article draft as context
)
模式 2:协作完成单个任务
复制
询问 AI
collaborative_task = Task(
description="""Create a marketing strategy for a new AI product.
Writer: Focus on messaging and content strategy
Researcher: Provide market analysis and competitor insights
Work together to create a comprehensive strategy.""",
expected_output="Complete marketing strategy with research backing",
agent=writer # Lead agent, but can delegate to researcher
)
层级协作
对于复杂的项目,可以使用一个经理智能体来构建层级流程复制
询问 AI
from crewai import Agent, Crew, Task, Process
# Manager agent coordinates the team
manager = Agent(
role="Project Manager",
goal="Coordinate team efforts and ensure project success",
backstory="Experienced project manager skilled at delegation and quality control",
allow_delegation=True,
verbose=True
)
# Specialist agents
researcher = Agent(
role="Researcher",
goal="Provide accurate research and analysis",
backstory="Expert researcher with deep analytical skills",
allow_delegation=False, # Specialists focus on their expertise
verbose=True
)
writer = Agent(
role="Writer",
goal="Create compelling content",
backstory="Skilled writer who creates engaging content",
allow_delegation=False,
verbose=True
)
# Manager-led task
project_task = Task(
description="Create a comprehensive market analysis report with recommendations",
expected_output="Executive summary, detailed analysis, and strategic recommendations",
agent=manager # Manager will delegate to specialists
)
# Hierarchical crew
crew = Crew(
agents=[manager, researcher, writer],
tasks=[project_task],
process=Process.hierarchical, # Manager coordinates everything
manager_llm="gpt-4o", # Specify LLM for manager
verbose=True
)
协作最佳实践
1. 清晰的角色定义
复制
询问 AI
# ✅ Good: Specific, complementary roles
researcher = Agent(role="Market Research Analyst", ...)
writer = Agent(role="Technical Content Writer", ...)
# ❌ Avoid: Overlapping or vague roles
agent1 = Agent(role="General Assistant", ...)
agent2 = Agent(role="Helper", ...)
2. 策略性地启用委派
复制
询问 AI
# ✅ Enable delegation for coordinators and generalists
lead_agent = Agent(
role="Content Lead",
allow_delegation=True, # Can delegate to specialists
...
)
# ✅ Disable for focused specialists (optional)
specialist_agent = Agent(
role="Data Analyst",
allow_delegation=False, # Focuses on core expertise
...
)
3. 上下文共享
复制
询问 AI
# ✅ Use context parameter for task dependencies
writing_task = Task(
description="Write article based on research",
agent=writer,
context=[research_task], # Shares research results
...
)
4. 清晰的任务描述
复制
询问 AI
# ✅ Specific, actionable descriptions
Task(
description="""Research competitors in the AI chatbot space.
Focus on: pricing models, key features, target markets.
Provide data in a structured format.""",
...
)
# ❌ Vague descriptions that don't guide collaboration
Task(description="Do some research about chatbots", ...)
协作问题排查
问题:智能体不协作
症状: 智能体各自为政,没有发生委派复制
询问 AI
# ✅ Solution: Ensure delegation is enabled
agent = Agent(
role="...",
allow_delegation=True, # This is required!
...
)
问题:来回沟通过多
症状: 智能体提出过多问题,进展缓慢复制
询问 AI
# ✅ Solution: Provide better context and specific roles
Task(
description="""Write a technical blog post about machine learning.
Context: Target audience is software developers with basic ML knowledge.
Length: 1200 words
Include: code examples, practical applications, best practices
If you need specific technical details, delegate research to the researcher.""",
...
)
问题:委派循环
症状: 智能体之间无休止地来回委派复制
询问 AI
# ✅ Solution: Clear hierarchy and responsibilities
manager = Agent(role="Manager", allow_delegation=True)
specialist1 = Agent(role="Specialist A", allow_delegation=False) # No re-delegation
specialist2 = Agent(role="Specialist B", allow_delegation=False)
高级协作功能
自定义协作规则
复制
询问 AI
# Set specific collaboration guidelines in agent backstory
agent = Agent(
role="Senior Developer",
backstory="""You lead development projects and coordinate with team members.
Collaboration guidelines:
- Delegate research tasks to the Research Analyst
- Ask the Designer for UI/UX guidance
- Consult the QA Engineer for testing strategies
- Only escalate blocking issues to the Project Manager""",
allow_delegation=True
)
监控协作
复制
询问 AI
def track_collaboration(output):
"""Track collaboration patterns"""
if "Delegate work to coworker" in output.raw:
print("🤝 Delegation occurred")
if "Ask question to coworker" in output.raw:
print("❓ Question asked")
crew = Crew(
agents=[...],
tasks=[...],
step_callback=track_collaboration, # Monitor collaboration
verbose=True
)
记忆与学习
使智能体能够记住过去的协作复制
询问 AI
agent = Agent(
role="Content Lead",
memory=True, # Remembers past interactions
allow_delegation=True,
verbose=True
)
后续步骤
- 尝试示例:从基础协作示例开始
- 试验角色:测试不同的智能体角色组合
- 监控交互:使用 `verbose=True` 查看协作的实际过程
- 优化任务描述:清晰的任务能带来更好的协作
- 扩大规模:尝试使用层级流程来处理复杂项目
